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The Competition among Airlines and its Effect on the Aviation Network 

TERAJI, Yusuke 

 

Abstract: 

This paper constructs the three-airport model in which a full-service airline can determine its 

network configuration. Moreover, the degree of the competition differs among the three routes: 

namely, the full-service airline faces the intense competition in a thick demand route while other two 

routes are under the monopoly by the full-service airline. By using this model, we address the 

following problems: i) how the competition affects the full-service airline’s network choice; and ii) 

to correct the inefficiency of the airline’s network choice, what type of the policies is socially 

preferred. With respect to the policies, we consider the two alternative policies, the direct regulation 

on the network choice and the transfer among the routes through the universal service fee revenue. 

By comparing the two policies, it is shown that when the airline forms the point-to-point, the direct 

regulation is socially preferred while under the hub-spoke, the transfer scheme achieves the higher 

economic welfare. 

Keywords: Airline Competition, Network Choice, Direct Regulation, Universal Service Fee 

 

1. Introduction 

Due to a significant decline in the population, Japanese local airports face the 

problem how to keep the passenger flight service. Indeed, from 2006 to 2015, although 

the Japanese airport users have increased by 8.47 %, the users of airports with less than 

30 flights per day have declined by 7.47 %.1 To sustain the flight service at local 

airports, the Japanese government implements the regulation on the flight service 

between the local airports and the Japanese largest hub, Tokyo International Airport. 

                                                        

 
1 Spitz et al. (2015) have reported that, from 2001 to 2013, the small airports in the United States 

have experienced 32 % decline in the flights, and 17 % decline in the available seats. Although, 

during the same period, the large hub airports have also faced the decreases in the flights and the 

available seats, the degree of the decline is less significant than the small airports experienced. 
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Specifically, the regulation has the following two features: i) airlines cannot convert its 

slots for the thin demand routes to the thick demand routes; ii) once abolishing the 

routes to the thin demand airport, its slot is reallocated to other airlines. Under this 

regulation, ceasing the service to the thin demand routes immediately means the loss of 

the slots at the largest hub; therefore. this regulation can be interpreted as the policy 

such that the government directly determines whether to abolish the direct flight service 

to thin demand routes. This regulation may be justified from the equity as well as from 

the efficiency perspective; namely, the access to the largest hub can be viewed as an 

essential service to keep the nation-wide free movement. 

In contrast to the aviation market, in the telecommunication market, several countries 

introduce the universal service fund to maintain the nation-wide service. This policy is 

implemented because of the deregulation in the telecommunication market. Namely, 

before the deregulation, the services to the thin demand markets have maintained by the 

cross subsidy of the nation-wide provider. The deregulation, however, results in the 

intense competition in the thick demand markets; therefore, the nation-wide provider 

faces the shortage of the funds for the cross subsidy. Therefore, in order to maintain the 

service to the thin demand routes, the government collects the fees from each telephone 

user, and the fee revenue is redistributed to the thin demand markets. Although the 
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aviation market also experiences the deregulation and consequent intense competition in 

thick demand markets, maintaining the flight service in thin demand markets still 

depends on the cross subsidy by the network airlines.2 Between the two alternative 

policies, the direct regulation and the universal service fee, this paper compares the 

efficiency gains. Specifically, we address the problems such as i) how the intense 

competition in a thick demand route affects a full-service airline’s network choice and 

the economic welfare; ii) between the direct regulation and the universal service fee, 

which policy enhances the economic welfare; and iii) under what circumstance the 

universal service fee is socially preferred. 

Due to the deregulation in the aviation market, several studies deal with the airline’s 

network choice (for example, Brueckner, 2004; Kawasaki, 2008; Flores-Fillol, 2009).3 

They, however, mainly focus on the case where the monopolistic airline, and 

consequently the effect of the competition in some routes on the entire network is out of 

                                                        

 
2 For network airlines, such as All Nippon Airways (ANA) and Japan Airlines (JAL), the regulation 

on the slots at Haneda forces to implement the cross subsidy between the thick and the thin demand 

markets. Indeed, ANA claims that, due to the nationwide population decline and the intense 

competition in the thick demand routes, it is more difficult to implement the cross subsidy between 

the thick and the thin demand routes (Ministry of Land, Infrastructure, Transport, and Tourism 

2012). 
3 Brueckner (2004) analyzes the topic using three airports and a monopolistic carrier model. The 

carrier chooses a hub-spoke network when the fixed cost for a flight is high relative to the marginal 

cost for a seat and when passengers place a high value on flight frequency. Kawasaki (2008) extends 

the model of Bruechner (2004) by introducing the heterogeneity in value of time among passengers, 

leisure and business demands. Flores-Fillol (2009) extends the model by considering the duopoly 

case and shows that asymmetric equilibria may arise, namely one carrier chooses a point-to-point 

network while the other chooses a hub-spoke network. 
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consideration. With respect to the regulation at the congested hub airport, the 

comparison of the slot allocation and the congestion pricing is studied in Bruecner 

(2009), Basso and Zhang (2010), and Sieg (2010).4 Although they compare the two 

alternative policies from the economic welfare perspective, the difference in the demand 

size among the routes is not considered. Focusing on the Japanese regulation, Teraji and 

Araki (2016) compares the regulation on the slot and the discount in the landing fee. 

Although they show that both policies are equivalent in the efficiency perspective, they 

do not consider the transfer scheme among the passengers traveling different routes. The 

transfer is considered in Valido et al. (2013), but they focus on the residence based 

transfer and on a single origin destination pair. 

This study constructs the three-airport model in which the demand size differs among 

the three airports. Furthermore, due to the difference in the demand size, the degree of 

the competition varies. Specifically, a full-service airline competes in a thick demand 

route, and the other two routes are under its monopoly. Also, note that the full-service 

airline enjoys the economies of scope if it serves to more than two routes. By using this 

model, we deal with how the full-service airline determines its network configuration, 

and how the competition in the thick demand routes affects the full-service airline’s 

                                                        

 
4 Other than these studies, Fukui (2010) deals with the problem whether the slot allocation promotes 

the competition among airlines. 
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network choice. In addition, to correct the inefficiency of the full-service airline’s 

network choice, we consider the two alternative policies, the direct regulation on the 

network choice by the full-service airline and the universal service fee. The direct 

regulation is aimed at maximizing the economic welfare under the circumstance where 

the airfares and the number of seats (or flights) are determined under the decentralized 

setting. In contrast, under the universal service fee, the government imposes the 

different fees on the passengers travelling the different routes while the full-service 

airline determines its network configuration. 

The rest of this paper is organized as follows. Section 2 describes the model. Section 

3 summarizes the equilibrium network configuration which is determined by the 

full-service airline in order to maximize its profit. To measure the inefficiency of the 

equilibrium network configuration, this section also derives the optimal network 

configuration. In Section 4, we consider the two alternative policies, the direct 

regulation and the universal service fee. Through the comparison of the four alternative 

network configurations, we evaluate the welfare effects of the two policies. In addition, 

we summarize the condition where the universal service fee scheme is socially desired. 

Finally, Section 5 concludes. 
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2. The Model 

2.1. The Basic Setting 

Suppose an economy which is consisted from the three cities, 𝐻, 𝐿, and 𝑆. The 

three cities differ in the population size, and we denote by 𝑛𝑖 the population of City 𝑖 

(𝑖 = 𝐻, 𝐿, 𝑆). In addition, we assume that City 𝐻 is the largest city whereas City 𝑆 is 

the smallest. In order to simplify the analysis, we normalize the population of 𝐻, 𝑛𝐻, 

to unity; therefore, 𝑛𝐻 = 1 > 𝑛𝐿 > 𝑛𝑆. Each City 𝑖 has an airport, and we name the 

one at City 𝑖 Airport 𝑖. Figure 1 summarizes the geography of this economy, and 𝑙𝑖𝑗 

represents the distance between the two cities, 𝑖 and 𝑗. We assume that Cities 𝐿 and 

𝑆 are equidistant from City 𝐻, and we normalize the distances between City 𝐻 and 

Cities 𝐿 and 𝑆 to unity (that is, 𝑙𝐻𝐿 = 𝑙𝐻𝑆 = 1). Moreover, we consider the situation 

where the distance between Cities 𝐿 and 𝑆, 𝑙𝐿𝑆, is at least the same as those between 

City 𝐻 and Cities 𝐿 and 𝑆. In order to avoid the notational complexity, we denote by 

𝑙 ≥ 1 the distance between 𝐿 and 𝑆. 

<<Figure 1: ABOUT HERE>> 

As in Figure 1, this economy has the three air trip routes. Hereafter, we denote these 

three by Routes 𝐻𝐿, 𝐻𝑆, and 𝐿𝑆. According to the setup described above, the demand 

size varies among the three routes, and due to this difference, the degree of the 
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competition also differs among them. Namely, Route 𝐻𝐿 is under the competition 

while the other two routes are under the monopoly. Furthermore, we assume that a 

monopolistic provider serves to the two routes, 𝐻𝑆 and 𝐿𝑆, and it competes in Route 

𝐻𝐿 with other 𝑚 airlines. Hereafter, we call this monopolistic provider Airline 1. This 

economy has the three types of agents, Airline 1, other 𝑚 airlines, and residents. 

Among the three types, the sequence of the decision is as follows. First, Airline 1 

determines its network configuration, and then 𝑚 + 1 airlines chooses the amount of 

service to be provided along their served routes. Finally, residents in each city 𝑖 decide 

whether to travel to the other two cities by using Airport 𝑖.  

Since Airline 1 serves to all the three routes, Airline 1 can determine its network 

configuration. In order to express the network choice explicitly, we define by 𝛿𝑖𝑗 the 

binary variable, which shows Airline 1’s choice whether to provide the direct flight 

service to Route 𝑖𝑗. Namely, 𝛿𝑖𝑗 = 1 if Airline 1 operates the direct flight service 

along Route 𝑖𝑗 ; 𝛿𝑖𝑗 = 0, otherwise. By using 𝛿𝑖𝑗 , Airline 1’s network choice is 

represented by the vector 𝛅 = (𝛿𝐻𝐿 , 𝛿𝐻𝑆, 𝛿𝐿𝑆). Figure 2 below summarizes the Airline 

1’s alternative network choices. As in Figure 2, when Airline 1 chooses the hub-spoke 

network (that is, 𝛅 = (1,1,0)), we assume that the hub locates at Airport 𝐻. 

<<Figure 2: ABOUT HERE>> 



8 

 

The individual trip demand for Route 𝑖𝑗 is denoted by 𝑑𝑖𝑗, and it is specified as: 

 1 .ij ijd p    (1) 

By using Eq. (1), the aggregate demand, 𝐷𝑖𝑗, is derived as follows: 

     1 .ij i j ij i j ijD n n d n n p      

Let us denote by 𝑄𝑖𝑗 the number of seats for Route 𝑖𝑗 provided by the airlines. Since, 

at the equilibrium, 𝐷𝑖𝑗 = 𝑄𝑖𝑗, the inverse demand function for each of three routes, 

𝑃𝑖𝑗(𝑄𝑖𝑗), is derived as: 

   1 .
ij

ij ij ij ij

i j

Q
D Q P Q

n n
   


  (2) 

By using Eq. (2), the consumer surplus of Route 𝑖𝑗 is computed as: 

      
 

2

0

.
2

ijQ

ij

ij ij ij ij ij ij

i j

Q
CS Q P x dx P Q Q

n n
  


   (3) 

2.2. Airlines 

When providing the direct flight service to the routes, each airline incurs the two 

types of the cost, the flight operating cost and the fixed cost. The marginal flight 

operating cost is measured on a per passenger kilometer basis. For Airline 1, the 

marginal cost differs with its network configuration. Namely, because of the economies 

of scope, when Airline 1 operates the direct flight service to more than two routes, it can 

enjoy the scale economy. In other words, the marginal cost under 𝛅 = (1,1,1) or 𝛅 =
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(1,1,0) is lower than the one under 𝛅 = (1,0,0). In addition, taking the emergence of 

low cost carriers into consideration, we assume that the marginal cost of Airline 1 is at 

least as high as that of its competitors. The competitors are symmetric in their 

technologies; that is, the marginal costs of the competitors are identical. The marginal 

cost for the competitors is denoted by 𝑐, and that for Airline 1 depends on is network 

configuration. In case of 𝛅 = (1,1,1) or 𝛅 = (1,1,0) Airline 1’s marginal cost is 𝑐 

whereas, under 𝛅 = (1,0,0), the marginal cost is denoted by 𝛾𝑐 > 𝑐 (that is, 𝛾 > 1). 

Other than the direct flight operation cost, airlines incur the fixed cost if they choose 

to provide the direct flights to a route. This may include the costs such as the operation 

of the ground services at the airports. Furthermore, the fixed cost for Route 𝐻𝐿 is 

lower than those for Routes 𝐻𝑆 and 𝐿𝑆. Namely, we denote by 𝐹 the fixed cost for 

𝐻𝑆 and 𝐿𝑆, and for 𝐻𝐿 each airline incurs the cost 𝛼𝐹 < 𝐹 (that is, 𝛼 < 1). Under 

these assumptions, we compute the total cost of a competitor 𝑘 (𝑘 = 2,3, ⋯ , 𝑚 + 1) 

as: 

  for 2,3, , 1,k k

HLC cq F k m      (4) 

where 𝑞𝐻𝐿
𝑘  is the number of passengers using the flights of 𝑘 for Route 𝐻𝐿. For 

Airline 1, however, the total cost varies with its network configuration, 𝛅. Specifically, 

the total cost of Airline 1 is written as the function of 𝛅: namely,  



10 

 

       1 1 1 1 ,HL HL HS HS LS HL r

r HL

C c q c q l q F    


 
     

 
δ δ δ  (5) 

where 𝑞𝑟
1 is the number of passengers on boarding Airline 1’s flights along Route 𝑟. In 

Eq. (5), note that 𝛾(𝛅) = 𝛿𝐻𝑆 + (1 − 𝛿𝐻𝑆)𝛾 and 𝑙(𝛅) = 𝛿𝐿𝑆𝑙 + 2(1 − 𝛿𝐿𝑆). 

In addition, in market 𝐻𝐿, 𝑚 + 1 airlines compete whereas other two markets are 

under the monopoly; hence, 

 

1
1 1

1

,  ,  and .
m

k

HL HL HS HS LS LS

k

Q q Q q Q q




     

The inverse demand functions are rewritten as follows: 

            1 1, ,  and ,HL HL HL HS HS HS HS LS LS LS LSp Q p p Q p q p Q p q  HLq   

where 𝐪𝐇𝐋 represents the vector of the seats provided by 𝑚 + 1 airlines. Using this 

expression, the profits are rewritten as: 

          1 1 1 1 1, , ,HL HL HL HS HS HS HS LS LS LSp Q q p Q q p Q q C       
1 -

HLδ q q δ   (6.1) 

    , .k k k k

HL HL HL HLq p Q q C  -

HLq   (6.2) 

where 𝐪𝟏 = (𝑞𝐻𝐿
1 , 𝑞𝐻𝑆

1 , 𝑞𝐿𝑆
1 )  and 𝐪𝐇𝐋

−  represents the vector of seats served by 

competitors.5 Summing Eqs. (3) and (6), the social surplus under the network 𝛅 is 

computed as follows: 

          
1

1

, 2

, , , , .
m

k k

HL HL HS r r HL

r HS LS k

SS CS Q CS Q q  


 

    1 - -

HL HLQ δ δ q q q   (7) 

                                                        

 
5 In Eqs. (5) and (6.1), the network choice on Route 𝐻𝑆 affects the flight operating costs and the 

revenues from the monopoly markets. This reflects the fact such that, without the service along 𝐻𝑆, 

Airline 1 cannot earn the profits from its monopoly markets. 



11 

 

 

3. The Equilibrium and the Optimal Network Configurations 

This section deals with the problem how the competition among the airlines on a 

route affects the network airline’s choice. Specifically, we first solve the game among 

the airlines, and derive the equilibrium network configuration. Afterwards, the optimal 

network configuration, which maximizes the social surplus, is determined. Finally, by 

comparing the equilibrium and the optimal configurations, we summarize the distortion 

of the network choice due to the competition. This section is organized as follows. 

Subsection 3.1 deals with the equilibrium network configuration while Subsection 3.2 

focuses on the optimal network configuration. This subsection also reports the 

inefficiency of the equilibrium network configuration. 

3.1. The Equilibrium Network Configuration 

We assume that the airlines compete in the Cournot fashion in the market of Route 

𝐻𝐿. Therefore, the airlines’ problems are formulated as follows: 

  1max , , ,
1

1 -

HL
q

δ q q   (8.1) 

  max ,  for 2,3, , 1.
k
HL

k k

HL
q

q k m  -

HLq   (8.2) 

Solving the problems of (8), the first order conditions are: 

 
  2,

1 0,
1

k jk k
HL HLHL j k

k

LHL

q qq
c

nq





   



-

HLq
  (9.1) 
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 

 
11

1

1

2, ,
1 1 0,

1

j

HL HLj

HS HS

HL L

q q
c

q n


  




        

1 -

HLδ q q
  (9.2) 

 
 1 1

1

, , 2
1 0,

1

HS
HS

HS S

q
c

q n




  
    

  

1 -

HLδ q q
  (9.3) 

 
 

  
1 1

1

, , 2
1 2 1 0.LS

HS LS LS

L SLS

q
c l

n nq


  

  
      

  

1 -

HLδ q q
  (9.4) 

First, by applying the assumption such that 𝑚 competitors are symmetric, Eqs. (9.1) 

and (9.2) are solved as: 

  
     

1*
1 1 1

,
2

L

HL

n c m m
q

m

     




δ
δ   (10.1) 

  
    

*
1 1 2 1

.
2

Lk

HL

n c
q

m

    




δ
δ   (10.2) 

From Eqs. (9.3) and (9.4), the seats for the two monopoly routes are computed as:6 

  
  1*
1 1

,
2

S

HS

n c
q

 
δ   (11.1) 

  
    

1*
1

.
2

L S

LS

n n cl
q

 


δ
δ   (11.2) 

Plugging Eqs. (9.1), (10.1), and (10.2) into Eqs. (6), the airlines’ profits are derived 

as:7 

 

                                                        

 
6 Eq. (11.2) indicates that we implicitly assume that all the passengers for Routes 𝐻𝑆 and 𝐿𝑆 

utilize the Airline 1’s flight. Appendix A summarizes the set of the parameter values in which this is 

the case. 
7 The details of Airline 1’s profits are summarized in Appendix B. 
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            1* 1 * 1*, , ,r r r r r HL rr
r HL

P Q c l q F     


 
       

 
 1* -*

HLδ δ q q δ δ δ δ   (12) 

    
    

 

2

* *

2

1 1 2 1
, ,

2

Lk k k

HL

n c
q F

m


  

    
  



-*

HL

δ
δ q   (13) 

where 

      
      

* 1* *
1 1 1 3 2

,
2

Lk

HL HL HL

n m c m m
Q q mq

m

          


δ
δ δ δ   (14.1) 

    * 1*  for , .r rQ q r HS LS δ δ   (14.2) 

Also, note that, in Eq. (12), 𝑙𝑟(𝛅) is defined as: 

        1 and 2 1 .HL HS LS LS LSl l l l     δ δ δ   

In comparison of Eqs. (12), Airline 1 chooses its network configuration to maximize its 

profit, 𝜋1∗(𝛅).8 Let us denote by 𝛅∗ the equilibrium network configuration, and then 

it is derived from the following problem: 

  1*arg max .*

δ
δ δ   (15) 

By solving Eq. (15), Proposition 1 summarizes the equilibrium network 

configuration. 

Proposition 1 

The equilibrium network configuration, 𝛅∗, is characterized by: 

                                                        

 
8 We consider the situation where all the airlines earn the positive profits from Route 𝐻𝐿. Otherwise, 

once ceasing the service along Route 𝐻𝑆, Airline 1 must stop the service provision to 𝐻𝐿 since 

with a single route, Airline 1 has the cost disadvantage against its competitors. Appendix A shows 

the set of parameter values in which all the airlines earn the positive profits from 𝐻𝐿. 



14 

 

 

 

 

 

*

* *

*

1,0,0  if ,

1,1,0  if ,

1,1,1  if ,

F F

F F F

F F

 


  




*δ   (16) 

where 

 
    

*
2 2 2

,
4

L Sc n n l c l
F

     
   (17.1) 

 

          
 

     

2

*

2

2 2

1 1 2 1 1 2 4

2

1 1 1 2
.

4 4

L

S L S

c n m c m m m
F

m

n c n n c

          
 



   
    (17.2) 

Proof: see Appendix B. 

Proposition 1 shows that as the fixed cost increases, the equilibrium network 

configuration changes from the point-to-point to the single route via the hub-spoke 

network. The thresholds in Eqs. (17) show the Airline 1’s tradeoff. In case of 𝐹̃∗, 

Airline 1 chooses the point-to-point if the fixed cost is smaller than the additional flight 

operating cost for connecting passengers.9 In case of 𝐹̅∗, as in Eq. (17.2), in contrast, 

Airline 1 serves to the two routes, 𝐻𝐿 and 𝐻𝑆, if the fixed cost is smaller than the 

gains from the direct flight operations along the two routes. The gains from the 

two-route operation is consisted from the two components. In Eq. (17.2), the last two 

terms of the RHS capture the profits from the two markets, 𝐻𝑆 and 𝐿𝑆. The first term 

                                                        

 
9 As in Eq. (17.1), the threshold 𝐹̃∗ takes the negative sign if 𝑙 > 2. This indicates that if the 

distance between Airports 𝐿 and 𝑆 is larger than the distance between 𝐿 and 𝑆 via 𝐻, Airline 1 

never chooses the point-to-point as its network configuration. 
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represents the cost reduction in the flight operation along Route 𝐻𝐿 since, in our setup, 

the multiple-route operation generates the economies of scope. 

Observing the thresholds (17.1) and (17.2), 𝐹̃∗ is independent from the degrees of 

the competition, 𝑚, and of the economies of scope, 𝛾, while these two parameters 

affect 𝐹̅∗. That is, both the degrees of the competition and the economies of scope 

affect Airline 1’s choice to maintain the direct flight service to Route 𝐻𝑆. To confirm 

the effects of these two parameters, we state Proposition 2. 

Proposition 2 

i) As the economies of scope, 𝛾, becomes more significant, Airline 1 has a stronger 

incentive to provide the direct flight service to Route 𝐻𝑆; namely, 𝜕𝐹̅∗ 𝜕𝛾⁄ > 0. 

ii) As the competition in Route 𝐻𝐿 becomes tougher, Airline 1 ceases the direct flight 

service more easily; namely, 𝜕𝐹̅∗ 𝜕𝑚⁄ < 0. 

Proof: Differentiating Eq. (17.2) with respect to 𝛾 and 𝑚, 
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QED 

From Proposition 2, as the economies of scope increases, Airline 1 becomes more 
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willing to serve to Route 𝐻𝑆. This is because providing the service to 𝐻𝑆 relaxes 

Airline 1’s cost disadvantage in market 𝐻𝐿  against its competitors. The intense 

competition, however, makes Airline 1 stop serving to 𝐻𝑆 more easily because the gain 

from maintaining Route 𝐻𝑆 becomes less significant. 

3.2. The Optimal Network Configuration 

The social planner maximizes the social surplus, 𝑆𝑆(𝛅), by determining the seats 

provided along each Route 𝑟, 𝑄𝑟, and the network configuration, 𝛅. The social planner 

can utilize the efficient technology when providing the flight service; namely, the 

marginal operating cost for each Route 𝑟 is given by 𝑐𝑙𝑟(𝛅). Using Eqs. (2) and (3), 

the social surplus under the network 𝛅 is computed as:10 
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
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     

     

Q δ

δ   (18) 

where 𝐐 = (𝑄𝐻𝐿 , 𝑄𝐻𝑆, 𝑄𝐿𝑆).  

When determining the seats for each route, the social planner solves the following 

problem: 

  max , .OSS
Q

Q δ   

Solving this problem, the seats served for Route 𝑟 at the optimum is computed as: 

                                                        

 
10 Since the multiple airline operation augments the fixed cost for the route operation, the social 

planner allows a single airline operation for each route. 
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              1 1 , 1 1 , 1 .L S L Sn c n c n n cl      OQ δ δ   (19) 

Substituting Eq. (19) into Eq. (18), the social surplus is written as the function of 𝛅: 

that is, 𝑆𝑆𝑂(𝛅) = 𝑆𝑆𝑂(𝐐𝐎(𝛅), 𝛅). The optimal network configuration, 𝛅𝐎, is derived 

as the solution to the following problem: 

  arg max .OSSO

δ
δ δ   (20) 

Proposition 3 summarizes the solution of (20), 𝛅𝐎: 

Proposition 3 

The optimal network configuration, 𝛅𝐎, is characterized by: 
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where 
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F
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   (22.2) 

Proof: see Appendix B. 

The optimal configuration, 𝛅𝐎, is qualitatively similar to the equilibrium, 𝛅∗: namely, 

the network changes from the point-to-point to the single route via the hub-spoke as the 

fixed cost, 𝐹, increases.11 

                                                        

 
11 Observing Eq. (22.1), it is easily confirmed that, when Airports 𝐿 and 𝑆 is sufficiently distant 
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By comparing the thresholds in Propositions 1 and 3, the inefficiencies of the 

equilibrium network configurations are summarized in Proposition 4. 

Proposition 4 

By comparing with the optimal network configuration, Airline 1 ceases the direct flight 

service along Routes 𝐻𝑆 and 𝐿𝑆 more easily. 

Proof: By comparing the thresholds, 𝐹̃∗ and 𝐹̃𝑂, 
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This indicates that, for 𝐹̃∗ < 𝐹 < 𝐹̃𝑂, Airline 1 stops providing the direct flight service 

for Route 𝐿𝑆 even though the optimal network configuration is the point-to-point. For 

𝐹̅∗ and 𝐹̅𝑂, 

 

      

 

     

*

2

2 2

1 1 1 2 1 1 2

2

1 1 1 2
.

4 4

LO

S L S

c n m c m m
F F

m

n c n n c

           
 



   
    

The first term captures the Airline 1’s loss in Route 𝐻𝐿 whereas the last two terms 

capture the difference in the Airline 1’s profit and the consumers’ gains in other two 

routes. Rearranging this, we have 𝐹̅∗ < 𝐹̅𝑂. For 𝐹̅∗ < 𝐹 < 𝐹̅𝑂, although the optimal 

network is the hub-spoke, Airline 1 chooses to provide the direct flight service to the 

                                                                                                                                                                   

 

(namely, 𝑙 > 2), 𝐹̃𝑂 < 0. This implies that, for 𝑙 > 2, the point-to-point network is less efficient 

than other two networks. 
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single route, 𝐻𝐿. 

QED 

The inefficiencies of the Airline 1’s network choice is generated from the following 

two sources. First, due to the market power of Airline 1, the seats provided in markets 

𝐻𝑆 and 𝐿𝑆 become too small relative to the optimum; therefore, Airline 1 receives the 

relatively small gains in the two markets compared to those the social planner receives. 

Furthermore, when determining the network configuration, Airline 1 solely focuses on 

its profit whereas the planner considers the consumers’ gains as well as the airlines’ 

profits. Thus, compared to the optimum, Airline 1 ceases the direct flight service for 

thin demand routes more easily than the socially desired level. 

 

4. Direct Regulation vs. Universal Service Fees 

In Section 3, we have shown that, at the equilibrium, Airline 1 stops the direct flight 

service to the thin markets even when the service provision is efficient. To correct the 

Airline 1’s choice, this section introduces the two policy instruments, the direct 

regulation and the universal service fee. Under the direct regulation, taking the airlines’ 

choices on the seats into account, from the efficiency perspective, the government 

forces Airline 1 to keep the direct flight service along the thin demand routes. In case of 
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the universal service fee, the fees are collected on a per passenger basis, and the fee 

revenue are redistributed among the routes. This implies that passengers on some routes 

just pay the fees whereas passengers on other routes receive the subsidy. Hence, in this 

section, under the fee scheme, the government chooses the fee net of the subsidy for 

each route to maximize the social surplus whereas Airline 1 determines its network 

configuration. 

The rest of this section is organized as follows: first, Subsection 4.1 describes the 

direct regulation. Subsection 4.2 reports the network choice by Airline 1 under the fee 

scheme by tracking back the sequence of decisions. Specifically, in this subsection, we 

first report the results of the competition, and explain the fee scheme under the three 

alternative network structures. Finally, Subsection 4.3 addresses the question under 

what circumstance the fee scheme enhances the economic welfare than the direct 

regulation does. 

4.1. The Direct Regulation 

Due to the imperfect competition, Proposition 4 reports the inefficiencies of the 

equilibrium network configuration. In this subsection, we examine the regulated 

network configuration. Specifically, the government determines this configuration in 

order to maximize the social surplus whereas airlines choose the seats served to each 
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route. Substituting Eqs. (14) into (7), the social surplus under the network 𝛅  is 

computed as 𝑆𝑆(𝛅) = 𝑆𝑆(𝐐∗(𝛅), 𝛅).12 The regulated network configuration, 𝛅𝐑 , is 

obtained by solving the following problem: 

  arg max .SSR

δ
δ δ   (23) 

By solving the problem (23), the regulated network configuration, 𝛅𝐑, is derived as in 

Proposition 5. 

Proposition 5 

The regulated network configuration, 𝛅𝐑, is characterized by: 
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 (25.2) 

Proof: see Appendix C.  

                                                        

 
12 The detailed expressions are in Appendix C. 
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The regulated configuration, 𝛅𝐑, resembles to other two network configurations, the 

equilibrium, 𝛅∗ , and the optimum, 𝛅𝐎 : namely, the network changes from the 

point-to-point to the single route via the hub-spoke as the fixed cost, 𝐹, increases.13 

Under the regulated network, the social benefit of keeping a route includes the 

consumer’s surplus and the competitors’ profits as well as the Airline 1’s profit. 

Focusing on Eq. (25.2), which shows the social tradeoff of keeping the hub-spoke 

network, the social gain from keeping the hub-spoke network is decomposed into the 

two parts. Namely, the last two terms capture the social surpluses of Routes 𝐻𝑆 and 

𝐿𝑆 while the first term represent the net gain of Route 𝐻𝐿. As explained above, the net 

gain is generated from the economies of scope through maintaining the service 

provision along Route 𝐻𝑆; hence, Airline 1 can earn the larger profits from 𝐻𝐿. In 

addition, without Airline 1’s disadvantage, the competition in 𝐻𝐿  becomes more 

intense, passengers traveling between 𝐻 and 𝐿 can enjoy the lower airfare. In contrast, 

when Airline 1 serves to 𝐻𝑆, the competitors have no advantage against Airline 1; 

consequently, they receive the loss compared to the case where Airline 1 chooses the 

single route. In sum, however, the gain dominates the loss, and the first term of the RHS 

in Eq. (25.2) takes the positive sign. 

                                                        

 
13 Similar to other two network configurations, 𝛅∗ and 𝛅𝐎, Eq. (25.1) becomes negative if 𝑙 > 2. 

This implies that the government never forces Airline 1 to serve the direct flights to Route 𝐿𝑆 when 

the distance between 𝐿 and 𝑆 is sufficiently large. 
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4.2. The Universal Service Fee 

The fee is imposed on the airlines on a per passenger basis, and it is imposed on the 

airlines. The fee revenue is redistributed among the three routes to maximize the social 

surplus. In other words, the government faces the balanced budget constraint, and the 

government’s problem is formulated as maximizing the social surplus by determining 

the fee net of the subsidy for each route. Let us denote by 𝜏𝑟 the fee net of the subsidy 

to a passenger traveling Route 𝑟.14 Then, the airlines’ costs are rewritten as: 

      for 2,3, , 1,k k

HL HLC c q F k m     τ   (26.1) 
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 
 δ τ δ δ   (26.2) 

By using Eqs. (2) and (26), the profits of the airlines are written as the function of 𝛕: 

          1 1 1 1 1, , ; ; ,HL HL HL HS HS HS HS LS LS LSp Q q p Q q p Q q C       
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HLδ q q τ δ τ  

      , ; .k k k k

HL HL HL HLq p Q q C  -

HLq τ τ  

The airlines solve the following profit maximization problem: 

  1max , , ; ,
1

1 -

HL
q

δ q q τ   

  max , ;  for 2,3, , 1.
k
HL

k k

HL
q

q k m  -

HLq τ  

The solutions of these problems are: 

                                                        

 
14 The fee for each route may take the positive or the negative sign. The positive fee implies the tax 

is levied on the passenger traveling the route while the passengers receive the subsidy if the fee is 

negative. 
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Substituting Eqs. (27) into (7), the social surplus under the network 𝛅 is written as the 

function of the fees as well as the network choice: 15  that is, 𝑆𝑆(𝛕; 𝛅) =

𝑆𝑆(𝐐∗(𝛅; 𝛕), 𝛅).  

Using this, the government’s problem is formulated as: 

    *max ;  subject to ; 0.r r

r

SS Q 
τ

τ δ δ τ   

From the balanced budget constraint, it is obvious that, in case of 𝛅 = (1,0,0), 𝜏𝐻𝐿 = 0. 

For the other two networks, we derive the first order conditions as follows: 
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where 𝜆 represents the Lagrange multiplier for the balanced budget constraint. Since it 

                                                        

 
15 Given the Airline 1’s network choice, 𝛅, the government chooses the levels of the fees for each 

route to maximize the social surplus under the balanced budget constraint. Hence, the social surplus 

is computed as the sum of the consumer’s surplus and the airlines’ profits. 
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is difficult to derive the fees explicitly, we derive the pricing rules for the three routes 

from Eqs. (28): 
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where 𝜀𝑟
𝑇 measures the price elasticity of the trip demand for Route 𝑟. In addition, 

since the no fee is applied under the single route, 𝛅 = (1,0,0) , Eqs. (29) are 

independent from the economies of scope, 𝛾. 

From the balanced budget constraint, passengers traveling some routes receive the 

subsidy while the positive fee is levied on the other passengers. Observing Eqs. (29), we 

can easily confirm that the price elasticity is the key factor when determining the sign. 

This is summarized in Proposition 6. 

Proposition 6 

As the demand for Route 𝑟 becomes more elastic, the fee for Route 𝑟 takes the 

negative sign. 

Proof: In Eqs. (29), since 𝜀𝑟 < 0, the first terms of the RHS always take the positive 

sign while the second terms are negative. Therefore, as |𝜀𝑟| increases, the first term in 

the absolute value decreases. Hence, the elastic demand leads to the negative fee. 
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QED 

Since Routes 𝐻𝑆 and 𝐿𝑆 are under the monopoly whereas Route 𝐻𝐿 is under the 

competition, the demands for Routes 𝐻𝑆 and 𝐿𝑆 are more elastic than the one for 𝐻𝐿. 

This implies that the positive fee is levied on the competitive market, and the travelers 

in the monopoly markets are subsidized by using the fee revenue. 

Although the intuition is quite clear, it is difficult to solve Eqs. (28) explicitly. Let us 

denote by 𝜏𝑟
𝑇(𝛅) the solutions of Eqs. (28); then, the profits of Airline 1 under the three 

alternative networks, 𝜋1𝑇(𝛅), are computed as: 
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  (30) 

By using Eq. (30), the equilibrium network configuration under the fee scheme, 𝛅𝐓, is 

derived from the following problem: 

  1arg max .TT

δ
δ δ   

To derive 𝛅𝐓, we compare the profits under the three alternative networks, and obtain 

the thresholds, 𝐹̃𝑇  and 𝐹̅𝑇 . Similar to the thresholds of other three network 

configurations, at 𝐹 = 𝐹̃𝑇, Airline 1 is indifferent between the point-to-point and the 

hub-spoke. For 𝐹 > 𝐹̃𝑇, the hub-spoke maximizes the Airline 1’s profit while for 𝐹 <
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𝐹̃𝑇, Airline 1 prefers the point-to-point. At 𝐹 = 𝐹̅𝑇, the profits under the hub-spoke and 

the single route are identical. For 𝐹 > 𝐹̅𝑇, the profit under the single route is the largest 

whereas Airline 1 chooses the hub-spoke for 𝐹 < 𝐹̅𝑇. 

Through the numerical simulations, Figure 3 summarizes the effects on the thresholds, 

𝐹̃𝑇 and 𝐹̅𝑇, of the degrees of the competition, 𝑚, and the economies of scope, 𝛾. The 

upper side of Figure 3 shows that both 𝐹̃𝑇 and 𝐹̅𝑇 increases as the degree of the 

competition becomes more intense. This is interpreted as follows. As in Proposition 6, 

by operating the direct flight service along Routes 𝐻𝑆 and 𝐿𝑆, Airline 1 receives the 

subsidy from the competitors. Furthermore, since the more intense competition make 

the demand for 𝐻𝐿  trip more inelastic, the subsidy increases as the competitors 

increase; consequently, Airline 1 has more incentives to keep the service to the thin 

demand routes. 

<<Figure 3: ABOUT HERE>> 

The lower side of Figure 3 reports the effect of the economies of scope on the Airline 

1’s network choice. The economies of scope are measured by 𝛾, which reflect the 

marginal cost increase due to ceasing the service to the multiple routes. It is shown that 

although the fee scheme expands the domains of the point-to-point and the hub-spoke, 

the marginal effect of the economies of scope on the thresholds is equivalent to the one 
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on the equilibrium thresholds. Therefore, as the degree of the economies of scope 

increases, the domain of the hub-spoke expands whereas that of the point-to-point 

remains constant. In other words, as in Proposition 2, the economies of scope motivate 

Airline 1 to sustain the service provision along 𝐻𝑆 whereas they have no impact on the 

direct flight service provision along 𝐿𝑆. 

4.3. The Welfare Effects of the Two Policies 

To evaluate the welfare effects of the two alternative policies, Figures 4 and 5 

compare the thresholds of the four alternative network configurations. Figure 4 

summarize the effect of the degree of the competition on the thresholds. It shows that in 

case of the hub-spoke network, for 𝑚 ≥ 3, 𝐹̅𝑅 < 𝐹̅𝑇 < 𝐹̅𝑂. That is, for 𝐹̅𝑅 < 𝐹 < 𝐹̅𝑇, 

the fee makes Airline 1 sustain the service for 𝐻𝑆 whereas this service is allowed to 

abolish under the direct regulation. Since, for this domain, the optimal network is the 

hub-spoke, compared to the direct regulation, the fee scheme makes Airline 1 keep the 

service along 𝐻𝑆 more efficiently. In contrast, with respect to the direct flight service 

along 𝐿𝑆, 𝐹̃𝑇 < 𝐹̃𝑅 < 𝐹̃𝑂. Namely, for 𝐹̃𝑇 < 𝐹 < 𝐹̃𝑅, the fee scheme has no impact 

on the network choice by Airline 1 while the direct regulation succeeds in keeping the 

service for 𝐿𝑆 . Since, for this domain, the point-to-point is efficient, the direct 

regulation is more efficient than the fee scheme.  
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<<Figure 4: ABOUT HERE>> 

Figure 5 shows the effects of the economies of scope on the thresholds. As in the 

figures, both 𝐹̅𝑅  and 𝐹̅𝑇  increase as the economies of scope, 𝛾 , become more 

significant whereas 𝐹̃𝑅 and 𝐹̃𝑇 are constant. It is shown that, independent from both 

the degree of the competition and the economies of scope, 𝐹̃𝑇 < 𝐹̃𝑅 < 𝐹̃𝑂 always 

holds. That is, when Airline 1 has already formed the point-to-point, between the two 

alternative policies, the direct regulation is superior to the fee scheme when maintaining 

the direct flight service between Airports 𝐿 and 𝑆. In contrast, in comparison of 𝐹̅𝑅 

and 𝐹̅𝑇, the efficient policy tool depends on the degree of the competition. Namely, the 

direct regulation is socially preferred under the less competitive situation while the fee 

scheme sustains the service along Route 𝐻𝑆  more efficiently under the intense 

competition. In other words, the ranking between the two policies is independent from 

the economies of scope. These results indicate that the fee scheme assures the efficient 

outcome when Airline 1 faces the intense competition in the thick demand route and it 

has already formed the hub-spoke network. 

 

5. Conclusion 
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This paper develops a three-airport model in which a full-service airline can 

determine its network configuration. Furthermore, the degree of the competition differs 

among the routes; namely, the full-service airline faces the competition in the thick 

demand route while other two routes are under the monopoly by the full-service airline. 

By using this model, we address the problems such as: i) how the competition affects 

the full-service airline’s network; ii) by comparing the direct regulation and the fee 

scheme, which policy enhances the economic welfare. On the first problem, when the 

full-service airline forms the hub-spoke network, the competition makes the airline 

cease the direct flight service along the thin demand route more easily. Furthermore, the 

network without any intervention by the government is the least efficient; therefore, it is 

necessary to introduce some policy intervention.  

With respect to the policy intervention, we consider the two alternative policies, the 

direct regulation and the fee scheme. The efficiency gain of the two policies differs with 

the airline’s network choice. It is shown that, when the airline forms the point-to-point, 

the direct regulation achieves the higher efficiency gain than the fee scheme does. In 

contrast, the fee scheme generates the larger efficiency gain if the airline forms the 

hub-spoke network. This result is attributed to the difference in the effect of the 

competition on the airline’s network choice. In case of the point-to-point, the 
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competition in the thick market does not affect the network choice while, in case of the 

hub-spoke, the intense competition increases the subsidy to the full-service airline; 

consequently, under the hub-spoke network, the fee scheme is socially preferred to the 

direct regulation. 
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Appendix A: Ranges of Parameter Values 

The airfares for the three routes are computed as: 

     
  

* *
1 1 3 2

,
2

HL HL HL

c m m
p P Q

m

     


δ
δ δ   

     * 1* 1
,

2
HS HS HS

c
p P q


 δ δ   

     
 * 1*

1
.

2
LS LS LS

cl
p P q


 

δ
δ δ   

The travelers of Routes 𝐻𝑆 and 𝐿𝑆 use the service provided by Airline 1 if: 

      
    

* * *
1 1 3 211

,
2 2 2

HS HL LS

c m mclc
p p p

m

         


δδ
δ δ δ   (A.1.1) 
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 

   
  
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m
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δ δ δ   (A.1.2) 

Since the trip services for Routes 𝐻𝑆 and 𝐿𝑆 is not available if 𝛅 = (1,0,0), we limit 

our focus to the cases where Airline 1 forms the hub-spoke, 𝛅 = (1,1,0), or the 

point-to-point, 𝛅 = (1,1,1). In such situation, Eqs. (A.1) are rewritten as: 

      
    

 
* * *

4 2 21
,

2 2 2
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m c l mc
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δ δ δ   (A.2.1) 
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   
  

 
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.
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m m

   
     

 

δ
δ δ δ   (A.2.2) 

Focusing on Eq. (A.2.1), since 𝑙(𝛅) = 𝛿𝐿𝑆𝑙 + 2(1 − 𝛿𝐿𝑆) ≥ 1, 𝑝𝐻𝑆
∗ (𝛅) ≤ 𝑝𝐿𝑆

∗ (𝛅); 

therefore, Eq. (A.2.1) is automatically satisfied. For Eq. (A.2.2), in cases of 𝛅 =

(1,1,1) and 𝛅 = (1,1,0), the following conditions are met: 

 
  

 

 

 

 

 

2 4 24 1 2 41
0 ,

2 2 2 2 2 2

c l m mm c c mcl
l l

m m c m

              
  

  (A.3.1) 
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In addition to Eqs. (A.3), to assure that Airline 1 can provide the service to Route 𝐻𝐿, 

the following condition should be satisfied: 

  
       

 
1*

2
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Solving this for 𝐹, 

 
       

 
2

1 1 1 2 2 1 1
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2
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  (A.4) 

Furthermore, under the single route, the seats served by Airline 1 should be 

non-negative (that is, 𝑞𝐻𝐿
1∗ (1,0,0) ≥ 0), and the profit per seat should be non-negative 

(that is, 𝑝𝐻𝐿
∗ (1,0,0) − 𝛾𝑐 ≥ 0). These conditions are formally written as: 

    
 

1* 1
1,0,0 0 1 1 0 ,

1
HL
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 (A.5.1) 
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 
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1,0,0 0 1 2 1 2 0 .

2 1
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
            

  (A.5.2) 

Summarizing these conditions, we state Lemma 1, which summarizes the range of 

parameter values: 

Lemma 1 

Travelers along Routes 𝐻𝑆 and 𝐿𝑆 utilize the service provided by Airline 1, and 

Airline 1 earns the non-negative profit when it chooses the single route if the 

parameters suffice the following relations: 
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Appendix B: Proofs of Propositions in Section 3 

First, the profits of Airline 1 under the three alternative networks are computed as: 
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Comparing the profits of Airline 1, 𝜋1∗(𝛅), the equilibrium network configuration, 𝛅∗, 

is summarized in Proposition 1: 

Proposition 1 

The equilibrium network configuration, 𝛅∗, is characterized by: 
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where 
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Proof: By comparing the profits under the point-to-point and the hub-spoke, we obtain 
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the following relation: 
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Solving this for 𝐹, 
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This implies that, for 𝐹 < 𝐹̃∗, the point-to-point network maximizes the Airline 1’s 

profit while for 𝐹 ≥ 𝐹̃∗, the hub-spoke becomes more profitable than the point-to-point. 

In comparison of the profits under the hub-spoke and the single route, we have: 
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Again, solving this for 𝐹, 
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For 𝐹 < 𝐹
∗
, Airline 1 chooses the hub-spoke network while, for 𝐹 ≥ 𝐹

∗
, Airline solely 

provides the direct flight service to 𝐻𝑆. 

QED 

To derive the optimal network configuration, the social surplus under the three 
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alternative networks are computed as: 
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The optimal network configuration, 𝛅𝐎, is derived through the comparison of Eqs. 

(B.2): namely, 

Proposition 3 

The optimal network configuration, 𝛅𝐎, is characterized by: 
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where 
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Proof: The point-to-point is the optimal network configuration if: 
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Solving this for 𝐹, 
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The hub-spoke network maximizes the social surplus if: 
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Again, solving this for 𝐹, 
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     

2 2
1 1 1 2

1,1,0 1,0,0 .
2 2

S L SO O O
n c n n c

SS SS F F
   

      

Summarizing this, for 𝐹 < 𝐹̃𝑂 , the social surplus is maximized by forming the 

point-to-point; for 𝐹̃𝑂 ≤ 𝐹 ≤ 𝐹̅𝑂, the hub-spoke is the optimal network; and for 𝐹̅𝑂 <

𝐹, serving to Routes 𝐿𝑆 is less efficient. 

QED 
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Appendix C: Proofs of Propositions in Section 4 

To derive the regulated network configuration, we compute the social surplus under 

the three alternative networks as follows: 

 

 
    

 

  

  
 

2 2

2

2

1 1 3 1 3 1 1
1,1,1

82 2

3 1
2 1 ,

8

L S

L S

n m m c n c
SS

m

n n cl
F m

     
 



 
        (C.1.1) 

 

 
    

 

  

  
 

2 2

2

2

1 1 3 1 3 1 1
1,1,0

82 2

3 1 2
1 1 ,

8

L S

L S

n m m c n c
SS

m

n n c
F m

     
 



 
       (C.1.2) 

 

 
    

 

       

 

      

 
 

2

2

2

2

1 1 1 3 2
1,0,0

2 2

1 1 1 2 2 1 1

2

1 1 3 2 1 3 1 2 1
1 .

2

L

L

L

n m c m m
SS

m

n c m m c m m

m

m n c m m c
F m

m



 

 


      




            




          
  


(C.1.3) 

Comparing Eqs. (C.1), Proposition 5 derives the efficient network configuration, 𝛅𝐑: 

Proposition 5 

The regulated network configuration, 𝛅𝐑, is characterized by: 

 

 

 

 

1,0,0  if ,

1,1,0  if ,

1,1,1  if ,

R

R R

R

F F

F F F

F F

 


  




Rδ   (24) 

where 
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    3 2 2 2

,
8

L SR
c n n l c l

F
     

   (25.1) 

          
 

  

 

     

2 2

2

2 2 22 2

2

1 1 3 2 1 1 2 4 1 2 1 2

2 2

1 1 3 1 1 3 1 2
.

8 82 2

L
R

L S L S

c n c m m c m m
F

m

c m n n c n n c

m

  



          
 




     
  


 

 (25.2) 

Proof: From Eqs. (C.1), the government chooses the point-to-point if: 

    
    3 2 2 2

1,1,1 1,1,0 0.
8

L Sc n n l c l
SS SS F

     
     

Solving this for 𝐹, we have: 

    
    3 2 2 2

1,1,1 1,1,0 .
8

L SR
c n n l c l

SS SS F F
     

      

Now, we compare the social surplus between the hub-spoke and the single route. 

According to the comparison, the hub-spoke is more efficient if: 

 

   

          
 

  

 

     

2 2

2

2 2 22 2

2

1,1,0 1,0,0

1 1 3 2 1 1 2 4 1 2 1 2

2 2

1 1 3 1 1 3 1 2
0.

8 82 2

L

L S L S

SS SS

c n c m m c m m

m

c m n n c n n c
F

m

  





          
 




     
    



  

By solving this for 𝐹, we obtain the threshold at which the hub-spoke is as efficient as 

the single route: 
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   

          
 

  

 

     

2 2

2

2 2 22 2

2

1,1,0 1,0,0

1 1 3 2 1 1 2 4 1 2 1 2
         

2 2

1 1 3 1 1 3 1 2
                                 .

8 82 2

L
R

L S L S

SS SS

c n c m m c m m
F F

m

c m n n c n n c

m

  





          
 

  


     
  



 

QED 
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Figure 1: The Geography of the Economy 

 

 

 

Figure 2: The Alternative Network Configurations 
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Figure 3: Thresholds of the Equilibrium under the Fee Scheme 

(𝒍 = 𝟏. 𝟐, 𝒄 = 𝟎. 𝟏𝟐𝟓, 𝒏𝑳 = 𝟎. 𝟖, 𝒏𝑺 = 𝟎. 𝟏) 

 

 

Figure 4: The Degree of the Competition and the Thresholds 

(𝒍 = 𝟏. 𝟐, 𝒄 = 𝟎. 𝟏𝟐𝟓, 𝒏𝑳 = 𝟎. 𝟖, 𝒏𝑺 = 𝟎. 𝟏, 𝜸 = 𝟏. 𝟑) 

(1) The Effect of the Competition (𝜸 = 𝟏. 𝟑) 

(2) The Effect of the Economies of Scope (𝒎 = 𝟏) 
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Figure 5: The Economies of Scope and the Thresholds 

(𝒍 = 𝟏. 𝟐, 𝒄 = 𝟎. 𝟏𝟐𝟓, 𝒏𝑳 = 𝟎. 𝟖, 𝒏𝑺 = 𝟎. 𝟏) 

 

(1) The Less Competitive Case (𝒎 = 𝟏) 

(2) The More Competitive Case (𝒎 = 𝟒) 


